1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что понимают под стрелой времени. Направление времени. Физические «стрелы времени»

Охарактеризуйте стрелы времени;

Стрела времени-метафорическое обозначение направления времени. Это концепция , описывающая время как прямую (т. Е. математически одномерный объект) , протянутую из прошлого в будущее. Из любых двух несовпадающих точек оси времени одна всегда является будущим относительно другой.

«Стрела времени» позволяет нам отличать прошлое от будущего. «Стрела времени» как понятие фиксирует необратимость времени.

Наука выделяет три вида «стрела времени»: термодинамическую, психологическую и космологическую.Все эти виды взаимосвязаны между собой. Термодинамическая стрела времени «указывает» направление времени в макромире. Психологическая стрела представляет собой частный случай временной стрелы в термодинамике; она фиксирует необратимость процессов, идущих в головном мозге и организмах живых существ: мы помним прошлое, но не будущее. Космологическая стрела времени – глобальная интерпретация стрелы термодинамической. Она показывает, что Вселенная расширяется, а не сжимается.

Для осуществления разумной жизни и управления необходима термодинамическая и психологическая стрела времени как необратимого и направленного на расширение космического процесса. Поэтому управление представляет собой социальный феномен, возникший в ходе развития общества в масштабах макромира; в масштабах термодинамической и психологической стрелы времени, как можем мы сказать в настоящее время. Управление, анализируя прошлые результаты труда, прогнозирует будущие его результаты, получаемые в процессе совместной человеческой деятельности.
Стрела времени позволяет предвидеть, прогнозировать управленческий результат, то есть видеть его раньше, чем он наступил в реальности, и потому более уверенно двигаться к достижению намеченного успеха.

6.Могут ли стрелы времени иметь разное направление,обоснуйте.Мы знаем, что время- это совокупность отношений, выражающих координацию сменяющих друг друга состояний ( явлений) , их последовательность и длительность.

Время позволяет различать «раньше» и «позже» ,прошлое и будущее.Как количественная величина, время есть число движения, причем число, которым выражается время, может только увеличиваться. В этом заключается основное свойство времени-однонаправленность.

Стрела времени – строгий научный термин, введённый знаменитым английским астрономом и физиком Артуром Стэнли Эддингтоном в 30-х годах нашего века для характеристики такого общеизвестного свойства времени, как его однозначная направленность из Прошлого в Будущее. Стрела – это образ однонаправленного движения.

Однонаправленность времени — это логическая последовательность сменяющих друг друга явлений, событий и т. д. Из данного свойства времени можно сделать вывод о том, что возникновению следствия всегда предшествует формирование причины. Наоборот, быть НИКОГДА не может: нельзя сначала испечь хлеб, а затем помолоть муку, для того чтобы испечь именно данную буханку хлеба.

психологическая стрела времени — задается в нашем мозгу термодинамической стрелой времени.

Почему термодинамическая и космологическая стрелы времени направлены одинаково? Или, другими словами, почему беспорядок возрастает во времени в том же направлении, в каком расширяется Вселенная? Ответ— условия в фазе сжатия непригодны для существования таких разумных существ, которые могли бы спросить, почему беспорядок растет в том же направлении во времени, в котором расширяется Вселенная. Условие отсутствия границ предсказывает раздувание Вселенной на ранних стадиях развития.Для существования разумной жизни необходима сильная термодинамическая стрела. Чтобы выжить, люди должны потреблять пищу, которая выступает как носитель упорядоченной формы энергии, и превращать ее в тепло, т. е. в неупорядоченную форму энергии. Следовательно, на стадии сжатия никакой разумной жизни быть не могло. Этим объясняется, почему для нас термодинамическая и космологическая стрелы времени направлены одинаково. Из-за отсутствия границ растет беспорядок , но только в фазе расширения создаются условия для существования разумной жизни.

Итак, Законы науки не делают различия между направлением «вперед» и «назад» во времени. Но существуют по крайней мере три стрелы времени, которые отличают будущее от прошлого. Это термодинамическая стрела, т. е. то направление времени, в котором возрастает беспорядок; психологическая стрела – то направление времени, в котором мы помним прошлое, а не будущее; космологическая стрела – направление времени, в котором Вселенная не сжимается, а расширяется.Психологическая стрела практически эквивалентна термодинамической стреле, так что обе они должны быть направлены одинаково. Из условия отсутствия границ вытекает существование четко определенной термодинамической стрелы времени, потому что Вселенная должна была возникнуть в гладком и упорядоченном состоянии. А причина совпадения термодинамической и космологической стрел кроется в том, что разумные существа могут жить только в фазе расширения. Фаза сжатия для них не подходит, потому что в ней отсутствует сильная термодинамическая стрела времени.

Стрела времени существует, т к вселенная расширяется. Если в будущем она будет сжиматься, то и изменится направление стрел времени.На стадии сжатия жизнь должна течь в обратном направлен, так что люд умирали бы до своего рождения и по мере сжатия становились бы все моложе и моложе.

Последовательность : прошлое—настоящее—будущее.Они необратимы в силу действия принципов логического отображения, а содержательно- в силу действия закона возрастания энтропии, самой схемы линейной причинности и закона генетического порождения одного другим – в виде стрелы времени.

Стрела времени

Для характеристики однонаправленности и необратимости времени английский астрофизик А. Эддингтон (1882—1944) в 1928 г. ввел понятие стрелы времени. Оно применимо к описанию таких природных процессов, которые протекают спонтанно, самопроизвольно и только в одном направлении. К ним относится большинство реальных физических процессов (теплопередача, теплообмен, диффузия, вязкость, распад элементарных частиц, процессы трения), а также процессы космической, химической, биологической и психологической эволюции.

Читать еще:  Как подтянуть руки и сделать их рельефными. Как сделать руки рельефными

При описании этих процессов в современной научной картине мира принято различать три стрелы времени: 1) термодинамическую, 2) психологическую, 3) космологическую.

Термодинамическая стрела времени характеризует то направление времени, в котором энтропия возрастает. Максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии.

Психологическая стрела времени связана с особенностями восприятия длительности протекающих в мире процессов органами чувств человека. Она позволяет установить различие между прошлым, настоящим и будущим и характеризует направленность времени от прошлого к будущему. При этом нельзя отождествлять процедуру измерения времени с самим временем 1 .

Космологическая стрела времени определяет направление эволюции нестационарной, неравновесной Вселенной. Согласно современной космологической модели Фридмана—Хаббла, Вселенная расширяется, а не сжимается. По предположению американского физика Р. Дик- ке, Вселенная расширяется не в пустоту, а в среду, уже заполненную элементарными частицами. Они вступают во взаимодействие с нашей Вселенной и в процессе расширения Вселенной оказываются в ней. Так происходит, по мнению Дикке, пополнение нашей Вселенной «новой материей» [1] [2] .

Термодинамическая, психологическая и космологическая стрелы времени совпадают по направлению, что и создает возможность для существования и развития разумных индивидов [3] .

Существование стрелы времени не могло быть доказано в рамках классической механики, поскольку механистический детерминизм не обладает таким важнейшим свойством, как необратимость во времени. Раскрывая законы статики и динамики материальных объектов, он не формулирует теоретический аппарат для описания их эволюции и развития.

Необратимость времени не была осмыслена и в теории относительности А. Эйнштейна. В том виде, в каком время входит в принципы теории относительности, оно не содержит различий между прошлым и будущим. Во второй половине XX в. с появлением синергетики и физики неравновесных процессов появилась возможность математическим путем объяснить существование стрелы времени. При этом синергетика исходит из следующих положений.

  • 1. Все системы, допускающие несводимое вероятностное описание, будут считаться хаотическими, так как эти системы можно описать не в терминах отдельных траекторий, а только в терминах пучков (ансамблей) траекторий.
  • 2. Хаос позволяет включить стрелу времени в фундаментальное описание материальных систем.
  • 3. Вероятностное описание системы в терминах пучка (ансамбля) траекторий невозможно и не может быть применимо к отдельной траектории. И в таком необратимом вероятностном описании прошлое и будущее играют различные роли 1 .

Пространство обладает свойством однородности и изотропности, а время — свойством однородности. Однородность пространства заключается в равноправии всех его точек, а изотропность — в равноправии всех направлений. Во времени все точки равноправны, не существует преимущественной точки отсчета, любую можно принимать за начальную.

Указанные свойства пространства и времени связаны с главными законами физики — законами сохранения. Если свойства системы не меняются от преобразования переменных, то ей соответствует определенный закон сохранения. Это — одно из существенных выражений симметрии в мире. Симметрии относительно сдвига времени (однородности времени) соответствует закон сохранения энергии; симметрии относительно пространственного сдвига (однородности пространства) — закон сохранения импульса; симметрии в отношении поворота координатных осей (изотропности пространства) — закон сохранения момента импульса, или углового момента. Из этих свойств вытекает и независимость пространственно-временного интервала, его инвариантность и абсолютность по отношению ко всем системам отсчета.

Особо следует сказать о структуре микро- и мегапространства. Микропространство является квантованным, ему присуща ячеистая структура. Специфика микропространства связана и с существованием виртуальных частиц, взаимным превращением элементарных частиц, их аннигиляцией. В микромире действует больше, чем в макромире, законов сохранения. Одна и та же элементарная частица может подчиняться нескольким законам сохранения [4] [5] .

В мегамире метрические свойства пространства зависят от распределения полей тяготения. Чем больше поле тяготения, тем сильнее сокращается протяженность пространственных объектов. При этом пространство, как уже отмечалось выше, оказывается не плоским, а приобретает кривизну. Кривизна пространства увеличивается по мере приближения к областям с повышенной плотностью материи.

  • [1] Лазарев С. С. Понятие «время» и геологическая летопись земной коры // Вопросы философии. — 2002. — № 1. — С. 84.
  • [2] Васильев М., Климентович Н., Станюкович К. Сила, что движет мирами. — М.:Атомиздат, 1978. — С. 124.
  • [3] См. подробнее: Потеев М.И. Концепции современного естествознания. — СПб.:Питер, 1999. — С. 95.
  • [4] Пригожий Я, Стенгерс И. Время, хаос, квант. — М.: Прогресс, 1994. — С. 9.
  • [5] Корнеева Л.И. Проблемы познания микромира. — М.: Мысль, 1978. — С. 25.

(Почти) обратимая стрела времени может привести нас к темной материи

Законы физики работают как вперед, так и назад во времени. Почему тогда кажется, что время движется лишь в одном направлении? Один из возможных ответов может также раскрыть секреты недостающей массы. Некоторые факты нашего опыта столь же очевидны и широко распространены, как различие между прошлым и будущем. Мы помним одно, но ожидаем другого. Если запустить фильм в обратном направлении, он не будет реалистичным. Мы говорим «стрела времени», имея в виду путь из прошлого в будущее.

Можно было бы предположить, что существование стрелы времени встроено в фундаментальные законы физики. Но верно и обратное. Если бы вы сняли фильм о субатомных событиях, вы бы обнаружили, что его обращенная во времени версия выглядит вполне разумно. Если более точно: фундаментальные законы физики — за исключением крошечных экзотических исключений, к которым мы еще вернемся — будут работать вне зависимости от того, поворачиваем мы рычаг времени вперед или назад. На фоне фундаментальных законов физики, стрела времени является обратимой.

Читать еще:  Спортивный туризм история,виды,описание,фото,видео. Спортивный туризм в мире

Если следовать логике, преобразование, которое меняет направление времени, должно менять и фундаментальные законы. Здравый смысл подсказывает, что должно. Но не меняет. Физики используют удобное сокращение для описания этого факта. Они называют преобразование, которое обращает стрелу времени, просто T, от «time reversal». И относят тот факт, что T не меняет фундаментальные законы, к «Т-инвариантности», или «Т-симметрии».

Повседневный опыт нарушает Т-инвариантность, тогда как фундаментальные законы ее уважают. Это вопиющее несоответствие поднимает сложные вопросы. Каким образом реальный мир, фундаментальные законы которого уважают Т-симметрию, умудряется выглядеть таким асимметричным? Возможно ли такое, что однажды мы найдем существ, живущих в противоположном ритме времени — которые становятся моложе, когда мы становимся старше? Можем ли мы, с помощью некоего физического процесса, перевернуть нашу собственную стрелу времени?

Это интересные вопросы, и к ним мы еще вернемся. В этой статье Франк Вилчек, физик-теоретик Массачусетского технологического института, лауреат Нобелевской премии, решил осветить другой вопрос. Он возникает, если начинать с другого конца, в рамках общего опыта. Загадка вот в чем?

Почему фундаментальные законы имеют это проблемное и странное свойство, Т-инвариантность?

Ответ, который можно предложить сегодня, несравненно глубже и сложнее того, что мы могли предложить 50 лет назад. Сегодняшнее понимание возникло из блестящего взаимодействия экспериментального открытия и теоретического анализа, заслуживших несколько Нобелевских премий. Но в нашем ответе недостает некоторых элементов. Их поиск может привести нас к неожиданной награде: определению космологической «темной материи».

Современная история Т-инвариантности началась в 1956 году. В том году Т. Д. Ли и К. Н. Янг поставили под вопрос другую, но связанную особенность физического закона, которую до них принимали как должное. Ли и Янг не были обеспокоены самой Т, но ее пространственным аналогом, преобразованием четности P. В то время как Т включает просмотр фильмов, идущих назад во времени, P включает просмотр фильмов, отраженных в зеркале. P-инвариантность — это гипотеза о том, что события, которые вы видите в отраженных фильмах, подчиняются тем же законам, что и в оригиналах. Ли и Янг определили косвенные противоречия в этой гипотезе и предложили важный эксперимент для их проверки. За несколько месяцев эксперименты показали, что P-инвариантность нарушается во многих случаях. (P-инвариантность сохраняется для гравитационных, электромагнитных и сильных взаимодействий, но в целом нарушается для слабых взаимодействий).

Мудрость понимания Джона Митчелла — что «вы не знаете, что у вас есть, пока оно не уйдет» — была доказана впоследствии.

Если мы будем как маленькие дети продолжать спрашивать «почему?», мы некоторое время будем получать более глубокие ответы, но в конечном итоге достигнем дна, когда придем к истине, которую не сможем объяснить более просто. В этот момент мы объявляем победу: «Все так, как оно есть». Но если мы позже найдем исключения для нашей предполагаемой истины, этот ответ уже не будет нас удовлетворять. Мы должны двигаться дальше.

Пока Т-инвариантность будет универсальной истиной, непонятно, насколько наш вопрос, заданный в начале, будет полезен. Почему Вселенная была Т-инвариантна? Да просто так. Но после Кронина и Фитча загадку Т-инвариантности просто нельзя игнорировать.

Многие теоретические физики столкнулись с неприятной проблемой понимания того, как Т-инвариантность может быть чрезвычайно точной, но не совсем. И здесь пригодилась работа Макото Кобаяси и Тосихиде Маскава. В 1973 году они предположили, что приблизительная Т-инвариантность является случайным следствием других, более глубоких принципов.

Прошло время. Незадолго до этого нарисовались контуры современной Стандартной модели физики элементарных частиц, а вместе с ними и новый уровень прозрачности фундаментальных взаимодействий. К 1973 году был мощный — и эмпирически успешный — теоретический фреймворк, основанный на нескольких «сакральных принципах». Это относительность, квантовая механика и математическое правило однородности под названием калибровочная симметрия.

Но заставить все эти идеи работать вместе оказалось сложно. Вместе они значительно ограничивают возможности базовых взаимодействий.

Кобаяси и Маскава, в двух коротких параграфах, сделали две вещи. Во-первых, они показали, что если ограничить физику известными тогда частицами (например, если бы было всего две семьи кварков и лептонов), то все взаимодействия, позволенные сакральными принципами, также следуют Т-инвариантности. Если бы Кронин и Фитч никогда не сделали своего открытия, все было бы не так. Но они сделали, и Кобаяси с Маскавой пошли еще дальше. Они показали, что если ввести особый набор новых частиц (третье семейство), эти частицы приведут к новым взаимодействиям, приводящим к нарушениям Т-инвариантности. На первый взгляд — прям то, что доктор прописал.

В последующие годы их блестящий пример детективной работы был полностью оправдан. Новые частицы, существование которых допустили Кобаяси и Маскава, были обнаружены, а их взаимодействия оказались в точности такими, какими должны были быть.

Внимание, вопрос. Являются ли эти сакральные принципы действительно сакральными? Конечно, нет. Если эксперименты приводят к тому, что ученые должны дополнить эти принципы, они, конечно, дополнят. На текущий момент сакральные принципы смотрятся чертовски хорошо. И были достаточно плодотворными, чтобы относиться к ним серьезно.

Читать еще:  Какой частью кулака наносить удар. Как бить кулаком сильнее

Но в этом яблоке есть червячок.

Через несколько лет после работы Кобаяси и Маскавы, Джерард т’Хоофт обнаружил лазейку в их объяснении Т-инвариантности. Сакральные принципы позволяют дополнительный вид взаимодействия. Возможное новое взаимодействие довольно тонкое, и открытие т’Хоофта стало сюрпризом для большинства физиков-теоретиков.

Новое взаимодействие, в случае присутствия с существенной силой, нарушило бы Т-инвариантность в гораздо более очевидной степени, чем эффект, открытый Кронином, Фитчем и их коллегами. В частности, оно позволило бы вращению нейтрона вырабатывать электрическое поле, в дополнение к магнитному полю, которое он может вызывать. (Магнитное поле вращающегося нейтрона — аналог того, что производит наша вращающаяся Земля, хотя и в совершенно других масштабах). Экспериментаторы усиленно искали такие электрические поля, но их поиски не приносили результатов.

Природа словно не хочет использовать лазейку т’Хоофта. Конечно, это ее право, но это право снова поднимает наш вопрос: почему природа так тщательно следует Т-инвариантности?

Предлагалось несколько объяснений, но только одно прошло проверку временем. Центральная идея принадлежит Роберто Пеццеи и Хелен Квинн. Их предложение, как у Кобаяси и Маскавы, включает расширение Стандартной модели особым образом. К примеру, через нейтрализующее поле, поведение которого особенно чувствительно к новому взаимодействию т’Хоофта. Если присутствует новое взаимодействие, нейтрализующее поле подстраивает собственную величину, чтобы компенсировать влияние этого взаимодействия. (Этот процесс подстройки в общем похож на то, как отрицательно заряженные электроны в твердых веществах собираются вокруг положительно заряженных примесей и экранируют их влияние). Такое нейтрализующее поле, получается, закрывает нашу лазейку.

Пеццеи и Квинн забыли о важных проверяемых последствиях своей идеи. Частицы, производимые их нейтрализующим полем — ее квантами — должны обладать замечательными свойствами. Поскольку они забыли о своих частицах, они их также и не назвали. Это позволило мне осуществить мечту детства.

За несколько лет до этого я увидел в супермаркете ярко раскрашенную коробку с названием «Аксион» (Axion). Мне показалось, что «аксион» звучит как частица и, вроде бы, таковой является. Поэтому когда я обнаружил новую частицу, которая «очищает» проблему с помощью «осевого» (axial) потока, мне показалось, что выпал шанс. (Скоро я узнал, что Стивен Вайнберг тоже обнаружил эту частицу, независимо. Он назвал ее «хигглет». К счастью, он согласился отказаться от этого названия). Так началась эпопея, заключение которой только осталось написать.

В хрониках Particle Data Group вы найдете несколько страниц, охватывающих десятки экспериментов, описывающих безуспешные поиски аксиона. Но поводы для оптимизма еще есть.

Теория аксионов предсказывает, в общих чертах, что аксионы должны быть очень легкими, очень долгоживущими частицами, которые слабо взаимодействуют с обычной материей. Но чтобы сравнивать теорию и эксперимент, нужно опираться на числа. И здесь мы сталкиваемся с двусмысленностью, поскольку существующая теория не фиксирует значение массы аксиона. Если бы мы знали массу аксиона, мы бы предсказали и остальные его свойства. Но сама масса может быть в широком промежутке значений. (Та же проблема была с очарованным кварком, частицей Хиггса, топ-кварком и несколькими другими. До обнаружения каждой из этих частиц, теория предсказала все их свойства, кроме значения массы). Оказалось, что сила взаимодействия аксиона пропорциональна его массе. Поэтому по мере уменьшения значения массы аксиона, он становится все более неуловимым.

Раньше физики были сосредоточены на моделях, в которых аксион тесно связан с частицей Хиггса. Предположили, что масса аксиона должна быть порядка 10 кэВ — одна пятидесятая массы электрона. Большинство экспериментов, о которых мы сказали ранее, искали аксион именно такого плана. В настоящее время мы можем быть уверены, что таких аксионов не существует.

Мы рассчитали, что аксионы должны были в изобилии производиться в течение первых моментов Большого взрыва. Если аксионы вообще существуют, то аксионная жидкость наполняет Вселенную. Происхождение аксионной жидкости грубо напоминает происхождение знаменитого космического микроволнового фона, но есть три крупных различия между двумя этими понятиями. Первое: микроволновый фон наблюдается, а аксионная жидкость остается сугубо гипотетической. Второе: поскольку аксионы обладают массой, их жидкость влияет на общую плотность массы Вселенной. По сути, мы подсчитали, что их масса должна грубо соответствовать массе, которую астрономы определили за темной материей! Третье: поскольку аксионы так слабо взаимодействуют, их должно быть сложнее наблюдать, чем фотоны реликтового излучения.

Экспериментальный поиск аксионов продолжается на нескольких фронтах. Два из самых многообещающих экспериментов нацелены на поиск аксионной жидкости. Один из них, ADMX (Axion Dark Matter eXperiment), использует специальные сверхчувствительные антенны для преобразования фоновых аксионов в электромагнитные импульсы. Другой, CASPEr (Cosmic Axion Spin Precession Experiment), ищет крошечные колебания в движении ядерных спинов, которые могут быть вызваны аксионной жидкостью. Помимо этого, эти сложные эксперименты обещают покрыть почти весь диапазон возможных масс аксиона.

Существуют ли аксионы? Мы пока не знаем. Их существование привнесет в историю обратимой стрелы времени драматическое и удовлетворительное заключение, а также, возможно, решит загадку темной материи в придачу. Игра началась.

Франк Вилчек, по материалам Quanta Magazine

Источники:

http://studopedia.su/12_63044_oharakterizuyte-streli-vremeni.html
http://studref.com/469322/kulturologiya/strela_vremeni
http://hi-news.ru/science/pochti-obratimaya-strela-vremeni-mozhet-privesti-nas-k-temnoj-materii.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector