✅ Каковы основные функции скелетных мышц у человека. Строение скелетной мышечной ткани. Виды мускулатуры по частям тела — ledi-i-sport.ru

СТРОЕНИЕ И ФУНКЦИИ СКЕЛЕТНЫХ МЫШЦ;

Назовите факторы, влияющие на рост и состояние костей.

Глава IV. МЫШЕЧНАЯ СИСТЕМА

Мышцы образуют активную часть опорно-двигательного аппарата. Они прикрепляются к костям скелета, действуют на костные рычаги, приво­дят их в движение. Поэтому их на­зывают также скелетными мышцами.

Скелетные мышцы построены из поперечно-полосатой мышечной тка­ни. Они выполняют следующие функ­ции: 1) удерживают положение тела и его частей в пространстве; 2) обес­печивают передвижение тела (бег, ходьба и другие виды движений);

3) перемещают части тела друг от­носительно друга; 4) осуществляют дыхательные и глотательные движе­ния; 5) участвуют в артикуляции речи и формировании мимики; 6) вы­рабатывают тепло; 7) преобразуют химическую энергию в механическую.

В теле человека насчитывают око­ло 600 мышц. Общая масса скелетной мускулатуры у новорожденных детей в среднем составляет 22% от массы тела, в 17 – 18 лет она достигает 35 – 40%. У пожилых и старых людей относительная масса скелетных мышц уменьшается до 25 – 30%. У тренированных спортсменов мышцы могут составлять до 50% от всей массы тела.

Основные функциональные свой­ства мышц: 1) возбудимость – спо­собность быстро отвечать на действие раздражителя возбуждением, в ре­зультате чего мышца способна сокра­щаться; 2) проводимость – способ­ность к проведению возбуждения от нервных окончаний до сократитель­ных структур мышечных волокон;

3) сократимость – способность к со­кращению, к укорочению или изме­нению напряжения.

Возбуждение и сокращение мышц происходят под влиянием нервных импульсов, приходящих по нервам из центральной нервной системы, из го­ловного и спинного мозга. Чтобы мышца возбудилась и ответила со­кращением, сила нервного импуль­са должна иметь достаточную вели­чину. Силу раздражения, способную вызвать сокращение мышцы, назы­вают пороговым раздражением.

Возникшая в мышце волна воз­буждения быстро распространяется по всей мышце, в результате мыш­ца сокращается, действует на кост­ные рычаги, приводя их в движение.

В мышце различают брюшко, со­стоящее из поперечно-полосатой мы­шечной ткани, и сухожильные кон­цы (сухожилия), образованные плот­ной волокнистой соединительной тканью. С помощью сухожилий мыш­цы прикрепляются к костям скелета (рис. 28).

Рис. 28. Схема начала и прикрепления мышц:

1 – мышца, 2 – сухожилие, 3 – кость

Однако некоторые мышцы могут прикрепляться и к другим ор­ганам (коже, глазному яблоку).

Конец мышцы, расположенный ближе к срединной плоскости тела. принято называть началом мышцы, другой конец, отстоящий от средин­ной плоскости, называют прикрепле­нием мышцы. Начало мышцы обычно остается неподвижным при изменении длины мышцы. Это место на кости называют неподвижной точ­кой. Место прикрепления мышцы, расположенное на кости, которая приводится в движение, называют подвижной точкой.

Основная рабочая ткань скелет­ной мышцы – поперечно-полосатая (исчерченная) мышечная ткань. Ее главным структурным и функциональным элементом является сложно устроенное мышечное волокно. Мышечные волокна – это многоядерные образования. В одном во­локне может быть более 100 ядер рис. 29). Длина мышечных волокон достигает нескольких сантиметров.

Снаружи мышечное волокно по­дрыто оболочкой – сарколеммой. В цитоплазме мышечного волокна – саркоплазме наряду с клеточными ‘органеллами общего характера на­ходятся и специализированные органеллы – миофибриллы. Это основные структуры мышечного волокна, состоящие из сократительных белков актина и миозина. Каждая миофибрилла состоит из сократительных участков – саркомеров. На границах саркомеров белковые молекулы расположены поперек мышечного во­локна. Эти участки, прикрепляющие­ся к сарколемме, получили название телофрагм. На середине саркомеров находятся мезофрагмы, также пред­ставляющие собой поперечную бел­ковую сеть. К телофрагме прикреп­лены нити актина, а к мезофрагме – нити миозина.

Из-за различного строения белко­вых молекул и преломления лучей света в саркомерах и на их грани­цах в мышечных волокнах видны светлые и темные участки, создаю­щие впечатления поперечно-полосатой исчерченности.

В основе мышечного сокращения лежит скольжение нитей актина и миозина относительно друг друга. Нити актина, двигаясь при возбуж­дении навстречу друг другу, умень­шают длину саркомеров.

Сократимость мышцы проявляет­ся или в ее укорочении, или в на­пряжении, при котором длина мы­шечных волокон не изменяется. В ор­ганизме мышечное сокращение воз­никает под влиянием нервных им­пульсов, которые получает мышца из центральной нервной системы по подходящим к ней нервам.

Двигательные нервные волокна, подходя к мышечным волокнам, образуют на них окончания – мотор­ные пластинки. Нервные импульсы, приходящие в область нервно-мы­шечных окончаний, стимулируют вы­деление биологически активного ве­щества – ацетилхолина, который вызывает возникновение потенциала действия. Потенциал действия рас­пространяется по мембране мышеч­ного волокна, мембранам саркоплазматического ретикулюма, вызы­вая выход ионов кальция в сарко­плазму, образование актомиазина, расщепление молекул АТФ. Осво­бождаемая при этом энергия исполь­зуется для скольжения белковых ни­тей и сокращения мышцы.

Рецепторы в скелетных мышцах представлены нервно-мышечными ве­ретенами. Каждое нервно-мышечное веретено окружено соединительно-тканной капсулой и содержит спе­циализированные мышечные волок­на, на которых располагаются чув­ствительные нервные окончания – рецепторы. Они воспринимают рас­тяжения мышцы и передают нерв­ные импульсы в центральную нерв­ную систему.

Каждая мышца состоит из боль­шого количества мышечных волокон, связанных между собой тонкими прослойками рыхлой волокнистой соединительной ткани в пучки. Груп­пы пучков покрываются более толс­той и плотной соединительнотканной оболочкой и образуют мышцу. Соединительнотканные волокна, окру­жающие мышечные волокна и их пуч­ки, выходя за пределы мышцы, фор­мируют сухожилие. Сухожилия у разных мышц неодинаковые. У мышц, расположенных на конечнос­тях, сухожилия обычно узкие и длин­ные. Сухожилия мышц, участвующих в образовании стенок полостей, ши­рокие, их называют апоневрозами.

Мышцы богаты кровеносными со­судами, по которым кровь приносит к ним питательные вещества и кис­лород, а выносит продукты обмена Источником энергии для мышечного сокращения является гликоген. В процессе его расщепления вырабатывается аденозинтрифосфатная кислота (АТФ), которая и являетсяисточником энергии для мышечного сокращения.

1. Какой процент от всей массы тела составляет мышечная у новорожденного ребенка, в юношеском возрасте, у старых людей?

Читать еще:  Почему одна нога может быть толще другой? Сопутствующие симптомы и диагностика патологии. Диагностика разной длины ног

2. Какие функции выполняют скелетные мышцы?

Скелетные мышцы

  • Физиология
  • История физиологии
  • Методы физиологии

Скелетные мышцы: строение, свойства и функции

У человека различают три вида мышц: поперечнополосатые скелетные мышцы; поперечнополосатая сердечная мышца; гладкие мышцы внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).

Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма

Рис. Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис. 2. Функции скелетных мышц

Физиологические свойства скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е около 90 мВ) возбудимость их ниже, чем нервных волокон (Е около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис. Скелетные мышцы человека

Физические свойства скелетных мышц

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость — способность мышцы изменять длину под действием растягивающей силы.

Эластичность — способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

Сила мышц — способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Вспомогательные свойства скелетной мускулатуры

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Читать еще:  Зарядка после 40 лет. Утренняя зарядка для женщин (видео)

Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Одиночное сокращение

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

Тетанус мышцы

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый — в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).

Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус

Режимы мышечных сокращений

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Гладкие мышцы сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.

Мышечная ткань. Строение, функции, классификация

Мышечная ткань образует активную часть опорно-двигательного аппарата – скелетные мышцы и мышечные оболочки внутренних органов. Её главной особенностью является способность сокращаться и возвращаться в исходное положение под влиянием нервных импульсов. Именно так осуществляются процессы дыхания, движения крови по сосудам, различные перемещения тела в пространстве. Мышечная ткань развивается из мезодермы еще на стадии эмбрионального развития. Выделяют 3 различных вида этой ткани, каждый из которых следует рассмотреть детально. Это поперечнополосатая, гладкая и сердечная поперечнополосатая мышечная ткань.

Поперечнополосатая мышечная ткань

Эта ткань характерна для наших скелетных мышц, отвечающих за движение тела, мимику и т.д. Выглядит как длинные волокна чаще всего закрепленные концами с сухожилиями. Когда волокно сокращается, сухожилие натягивается, что приводит к некому движению, например сгибанию пальца. Длина мышечного волокна в разных участках тела сильно различается от нескольких миллиметров до 12,5 см. Диаметр составляет от 10 до 70 мкм. Снаружи отдельные мышцы и группы мышц покрыты соединительно тканым «чехлом» – фасцией.

Клеточное строение

В поперечнополосатой мышечной ткани клеток в привычном понимании этого слова нет. Здесь клетки сливаются в единое целое, образуя многоядерное волокно, с общими органоидами – так называемый симпласт. Внутренняя среда симпласта – саркоплазма, содержит включения жира и гликогена, что совершенно необходимо для окислительных процессов, происходящих в мышцах.

Сократительный аппарат

Главным элементом сократительного аппарата являются миофибриллы – многочисленные белковые полоски, протянутые вдоль симпласта. Их диаметр составляет примерно 1 мкм. Миофибриллы как раз и придают мышечной ткани полосатость и состоят из нитей, называемых миофиламентами – удлиненных молекул сократительных белков: актина и миозина.

Читать еще:  Александр рагулин хоккеист биография. Легенды нашего хоккея. Александр Рагулин. Роль в команде

Миофибрилла состоит из участков (полос) обладающих различными химическими и физическими свойствами. Эти участки принято называть дисками. I-диски преломляют луч света только один раз, это свойство называется изотропностью. Они светлого цвета и состоят из белков актина. А-диски являются анизотропными, т.к. преломляют луч дважды. Они заметно темнее и состоят из актина и миозина. Структура миофибриллы состоит из повторяющих участков с актином и миозином. Каждый такой участок, является сократительной единицей и назывется саркомером. При получении нервного импульса происходит сокращение саркомеров, а вместе с ними и миофибриллы. Важную роль в мышечном сокращении играют ионы кальция.

Иннервация

Двигательные нервные клетки (мотонейроны), имеют длинный отросток (аксон), который подходит к мышце. У поверхности мышечного волокна аксон заканчивается, разделяясь на несколько коротких отростков, которые проникают в мышечные углубления. Так формируется нервное окончание. Мышечная ткань в области «подключения» нерва именуется двигательной концевой пластинкой.

Соединение двигательной концевой пластинки и окончания аксона называется нервно-мышечным синапсом. Мотонейрон и все мышечные волокна, которые он контролирует, посредством аксона образуют двигательную (нейромоторную) единицу – функциональную единицу скелетной мускулатуры.

Типы волокон скелетных мышц

Большинство мышц человеческого тела включает в состав волокна различных типов, обычно с преобладанием какого-то одного вида, лучше выполняющего функции данной мышцы. Давайте рассмотрим эти типы:

  • Медленные физические волокна окислительного типа – отличаются высоким содержанием белка миоглобина, способного связывать кислород. По своим свойствам миоглобин схож с гемоглобином. Мышцы с преобладанием этих волокон называют красными из-за их темно-красного цвета. Они выполняют функцию поддержания позы. Утомление происходит чрезвычайно медленно, а период полного восстановления очень короткий. Это достигается за счет миоглобина и большого числа митохондрий. Нейромоторные единицы красных мышц содержат большое количество мышечных волокон.
  • Быстрые физические волокна окислительного типа способны производить быстрые сокращения без заметного утомления. Содержат большое количество митохондрий и способны образовывать АТФ методом окислительного фосфолирования. Нейромоторная единица содержат меньшее число волокон, чем в красных мышцах.
  • Быстрые физические волокна с гликолитическим типом окисления – отличаются тем, что получают АТФ методом гликолиза. Из-за отсутствия миоглобина имеют белый цвет. Способны к сильным, быстрым сокращениям, но сравнительно быстро утомляются.
  • Тонические волокна принципиально отличаются от остальных групп имеющих одну, максимум несколько концевых пластинок. Тонические волокна имеют очень много синаптических контактов с аксоном, вследствие чего напряжение и расслабление мышцы происходит постепенно. Тонические волокна входят в состав наружных мышц глаза.

Функции и свойства скелетных мышц

Функции удобно представить в виде следующего списка:

  • обеспечение и поддержание позы;
  • перемещение тела в пространстве;
  • перемещение одной части тела относительно другой;
  • терморегуляция (выделение тепла).

Свойства скелетных мышц:

  • возбудимость – способность реагировать на действия раздражителя с последующим изменением мембранного потенциала и ионной проводимости (например, для ионов кальция). Пресипнатическое окончание аксона выделяет стимулирующее вещество – медиатор ацетилхолин, который и исполняет роль раздражителя;
  • проводимость – способность распространять возбуждение (потенциал действия) вдоль и вглубь мышечного волокна;
  • сократимость – способность укорачиваться или увеличивать напряжение во время возбуждения;
  • эластичность – увеличения напряжения при растягивании;
  • тонус – скелетные мышцы постоянно находятся в состоянии некоторого сокращения. При неврологических заболеваниях тонус может быть повышен либо понижен относительно нормы.

Гладкая мышечная ткань

Данный вид ткани находится в стенках внутренних органов, в лимфатических и кровеносных сосудах. Сокращения этой ткани в отличие от поперечнополосатой не подчиняется нашей воли. Поэтому ее еще называют непроизвольной мышечной тканью. Сокращается медленно, приблизительно за 60-80 секунд. Визуально отличается от других разновидностей мышечной ткани отсутствием поперечной исчерченности. Выделяют 2 подвида:

  • висцеральные (унитарные) гладкие мышцы – почти вся гладкая мускулатура образована этим подвидом, за исключением ресничной мышцы и мышцы радужки глаза.
  • мультиунитарные гладкие мышцы образуют ресничную мышцу и мышцы радужки глаза. Мультиунитарные отличаются от висцеральных большим количеством точек иннервации, что позволяет им работать с высокой скоростью. Это они отвечают за изменения диаметра зрачка под влиянием света.

Клеточное строение

Гладкая мышечная ткань состоит из отдельных клеток – миоцитов, имеющих веретенообразную форму. Длина миоцитов составляет 20-500 мкм, толщина 5-8 мкм. Ядро имеет эллипсовидную форму. Мембраны прилегающих к друг другу клеток образуют соединения – нексусы. Нексусы передают нервное возбуждение от одной клетки к другой. Миоциты содержат нити актина и миозина, но здесь они расположены менее упорядоченно, чем в поперечнополосатой мышечной ткани.

Иннервация

Гладкая мышечная ткань имеет двойную иннервацию: симпатическую (адренергическую) и парасимпатическую (холинэргическую). В зависимости от органа одна из них способствует возбуждению, а другая наоборот расслаблению гладкой мускулатуры. Например, мышечный тонус кишечника повышается под влиянием парасимпатической системы и уменьшается под влиянием симпатической. В тоже время адренергические нервы повышает тонус сосудистой стенки, а парасимпатическое влияние способствует снижению этого тонуса.

В гладкой мышечной ткани отсутствуют концевые пластинки и отдельно взятые нервные окончания. Холинергические и адренергические нервные волокна содержат утолщения – варикозы, которые расположены по всей длине мышцы. Эти варикозы содержат гранулы с химическими активными веществами – медиаторами. Для парасимпатической нервной системы медиатором служит ацетилхолин, а в симпатической системе его роль исполняет норадреналин. Миоциты не контактирующие с варикозами напрямую, активируются через нексусы.

Сердечная поперечнополосатая ткань

Данная ткань образует сердечную мышцу. По своей структуре частично совмещает в себе свойства гладкой и поперечнополосатой мышечной ткани. Клеточное строение представлено кардиомицитами. Сократительные кардиомиоциты отличаются цилиндрической формой и имеют длину 100-150 мкм. Их концы соединяются, образуя функциональные волокна толщиной 10-20 мкм. Также в сердечной ткани присутствуют проводящие кардиомиоциты. Они принимают сигналы от синусно-предсердного узла (главный узел проводящей системы сердца) и передают его сократительным кардиомиоцитам.

Источники:

http://studopedia.su/11_123749_stroenie-i-funktsii-skeletnih-mishts.html
http://www.grandars.ru/college/medicina/skeletnye-myshcy.html
http://psycheetcorpus.ru/myshechnaya-tkan-stroeniefunkcii-klassifikaciya.html