12 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Сколько раз в день пересекаются стрелки часов. Сколько раз на сутки встречаются все стрелки в часах? Сколько раз в день совпадают стрелки часов

Сколько раз в день стрелки часов совпадают?

Стрелки часов совпадают столько раз, сколько часов есть в сутках. То есть 24 раза. Если хотите проверить и под рукой у Вас нету часов, то попробуйте воспользоваться картинкой ниже

Но точное время совпадения я сказать не смогу (только в 00-00 и 12-00), так как надо расчитывать скорость движения часовой стрелки.

В момент начала отсчёта суток положение часовой и минутной стрелок совпадает. Минутная стрелка движется быстрее в 12 раз, поэтому пока маленькая стрелка дважды за сутки обойдёт циферблат, большая стрелка сделает это 24 раза.

За первый круг к времени 12 часов дня минутная стрелка ещё 11 раз догонит часовую.

За второй круг к времени 22 часа 55 минут это произойдёт ещё 10 раз.

Итого первое совпадение на старте, плюс 11 совпадений на первом круге, плюс 10 совпадений на втором круге, вот и получится всего 22 совпадения.

Считать ли последнее совпадение в 24 часа 00 минут принадлежащим к этим суткам?

Или это уже относится к новым суткам?

Моё мнение, что оно уже подсчитано и ответ будет 22 совпадения.

В сутки стрелки часов совпадают 22 раза.

Если взять десять суток — 220 раз.

Zmiter ответил почти точно, но если 00:00 это начало новых суток. то они заканчиваются в 23:59:59 и начинаются новые сутки. Правильный ответ 22 раза.

Часовая стрелка за сутки два раза обходит циферблат часов, а минутная стрелка совершает 24 оборота и 22 раза догоняет часовую. Если взять за время старта время полночи, то 0 часов 0 минут, то минутная сразу убежит вперёд и догонит часовую в 1 час 5 минут. Потом в 2 часа 11 минут, затем в 3 часа 16 минут, в 4 часа 22 минуты, в 5 часов 27 минут, в 6 часов 33 минуты, в 7 часов 38 минут, в 8 часов 44 минуты, в 9 часов 49 минут, в 10 часов 55 минут, в 12 часов 00 минут первый круг закончится, стрелки опять вместе и всё начнётся заново. Догонит минутная стрелка часовую в 13 часов 05 минут, в 14 часов 11 минут, в 15 часов 16 минут, в 16 часов 22 минуты, в 17 часов 27 минут, в 18 часов 33 минуты, в 19 часов 38 минут, в 20 часов 44 минуты, в 21 час 49 минут и последний раз стрелки будут вместе в 22 часа 55 минут.

Следующий раз возможен в 0 часов 0 минут, но это уже повторение самого первого раза.

То есть всего 22 раза догоняет минутная стрелка часовую.

У вас есть аналоговые часы с секундной стрелкой. Сколько раз в день все три стрелки часов накладываются друг на друга?

    Задачки, 20 октября 2015 в 13:09

Эта задача — вариант классического вопроса, задававшегося на собеседованиях в Microsoft, когда претендентов спрашивали, сколько раз в день часовая и минутная стрелки встречаются друг с другом. Посколько этот вопрос сейчас стал широко известен, интервьюверы начали использовать его разновидность.

Рассмотрим сначала вариант наиболее ожидаемого решения, математического. Во-первых, представьте ситуацию, когда часовая и минутная стрелки наложились. Все знают, что это происходит в полночь, затем приблизительно в 1:05, 2:10, 3:15 и так далее. Другими словами, они накладываются друг на друга каждый час, за исключением периода от 11:00 до 12:00. В 11:00 более быстрая минутная стрелка находится на 12, а более медленная часовая — на 11:00. До 12:00 дня они друг с другом не встретятся, и поэтому их наложения в районе 11 часов не будет.

Читать еще:  Зумба — противопоказания для занятий. Все, что вы хотели знать о зумбе. Выясняем все «за» и «против» занятий фитнесом

Таким образом, за каждый 12-часовой период происходит 11 наложений. Они равномерно распределены во времени, поскольку обе стрелки двигаются с постоянной скоростью. Это означает, что интервалы между наложениями составляют 12/11 часа. Это эквивалентно 1 часу 5 минутам 27 и 3/11 секундам. Поэтому за каждый 12-часовой цикл наложения происходят в периоды, указанные на картинке.

Вернёмся к секундной стрелке. Её наложение на минутную возможно тогда, когда число минут совпадает с числом секунд. Точное наложение происходит в 00:00:00. В целом минутные и секундные стрелки накладыватся лишь на долю секунды. Например, в 12:37:37 секундная стрелка будет показывать на 37, отставая от минутной, которая в это время будет между 37 и 38 и отставать от часовой. Через мгновение минутная и секундная наложатся, но часовой возле них не будет. Т.е. наложения всех трёх стрелок не произойдет.

Секундная стрелка не наложится ни в одном из вариантов на картинке, за исключением полуночи и полудня. Это означает, что финальный ответ на вопрос: дважды в сутки.

А вот ответ, приветствуемый в Google. Секундная стрелка предназначена для показа коротких временных интервалов, а не для сообщения времени с точностью до секунды. Если она не синхронизирована с двумя другими стрелками, это вполне нормально. Под «синхронизацией» здесь понимается, что в полночь и полдень все три стрелки указывают точно на 12. Большинство аналоговых часов всех видов не позволяют вам точно установить секундную стрелку. Нужно было бы извлечь батарейку или подождать, если говорить о механических часах, когда закончится завод пружины, а затем, когда секундная стрелка остановлена, синхронизировать минутную и часовую стрелки друг с другом, после чего дождаться, когда наступит время, показанное на часах, чтобы вернуть батарейку или завести часы.

Чтобы все это проделать, нужно быть маньяком или фанатеть от пунктуальности. Но если вы всего этого не проделаете, секундная стрелка не будет показывать «реального» времени. Она будет отличаться от точных секунд на какую-то величину в случайном интервале, доходящем до 60 секунд. Учитывая случайные расходждения, шансов на то, что все три стрелки когда-либо встретятся, не существует. Этого не случается никогда.

Сколько раз в течение суток перекрываются часовая и минутная стрелки?

Большинство людей сразу же понимает, что ответ должен быть 24 плюс-минус. Все проблема как раз в том, чтобы вычислить этот плюс-минус.

Сначала обратите внимание, что перекрытие стрелок — это абсолютно предсказуемое явление. Обе стрелки движутся с постоянной скоростью, следовательно, интервал времени между двумя последовательными перекрытиями постоянный.

Этот постоянный интервал чуть более часа. В полночь часовая и минутная стрелки точно совпадают. Минутной стрелке требуется ровно шестьдесят минут, чтобы описать полный круг, за то же самое время часовая стрелка проходит 1/12 часть круга и находится на отметке 1 час. Чтобы добраться до отметки 1 час, минутной стрелке потребуется пять минут, но за это время часовая стрелка еще немного продвинется вперед ….

Читать еще:  Белково растительный рацион. Белково растительная диета для беременных. Видео Легкая диета белково-овощная. Узнай, как надо питаться на белково-овощной диете

Перед тем как увлечься обсуждением парадокса Зенона Имеется в виду знаменитый парадокс древнегреческого философа Зенона, утверждающий, что Ахиллес никогда не догонит черепаху, так как, пока Ахиллес добежит до той точки, в которой только что была черепаха, она успеет еще чуть-чуть проползти вперед, давайте пока предположим, что между последовательными перекрытиями стрелок проходит чуть больше, чем 65 минут. Мы также знаем, что если умножить этот точный интервал на неизвестное целое число, должно получиться ровно двадцать четыре числа, так как каждые двадцать четыре часа часовая и минутная стрелки точно перекрываются на отметке 12. На самом деле это происходит каждые двенадцать часов — ведь путь, который стрелки проходят с полуночи до полудня, точно совпадает с путем, который они проходят с полудня до полуночи.

Давайте подробно проанализируем, что происходит за двенадцать часов с полуночи до полудня. За этот период стрелки не могут совпасть двенадцать раз — в этом случае интервал между совпадениями стрелок был бы 12/12 — или ровно один час, а мы знаем, что на самом деле он чуть больше, чем 65 минут. Следовательно, за этот период стрелки могут совпасть лишь 11 раз. Это значит, что продолжительность интервала между перекрытиями стрелок 12/11, или 65,45 минуты. Это и должен быть точный интервал, который мы не смогли вычислить чуть ранее. Умножив одиннадцать на два, мы получаем двадцать два перекрытия стрелок за двадцать четыре часа. Таким образом, двадцать два — это точный ответ, если только вы не захотите учитывать и совпадение стрелок в начале суток в полночь и в конце суток в следующую полночь — в этом случае ответом будет двадцать три.

У Майка и Тодда есть 21 доллар на двоих. У Майка на 20 долларов больше, чем у Тодда. Сколько денег у каждого? В ответе нельзя использовать дроби.

Это вопрос с подвохом, в котором скрыт «вызов». Ответ на основной вопрос достаточно прост. У вас может возникнуть искушение ответить, что у Майка 21 доллар, а у Тодда — 1 доллар, но тогда получается сумма в 22 доллара. Правильный ответ должен быть таким: у Майка 20,50 доллара, а у Тодда — 0,50 доллара. Если это для вас не очевидно — вы можете использовать алгебру, составить и решить уравнение. Вы также можете доказать, что это — единственный правильный ответ, но интервьюер настаивает, что в ответе нельзя использовать дроби.

Интервьюер не прав (или использует «техническую тонкость»: мол, целое количество центов — это не дроби). Ожидается, что вы будете отстаивать свою точку зрения и доказывать, что правильный ответ именно $20,50/$0,50. Такова жизнь в больших организациях.

Сколько в среднем раз вам нужно открыть наугад телефонный справочник Манхэттена, чтобы найти нужный вам номер телефона?

«Открыть наугад» подразумевает, что вы случайно открываете двухстраничный разворот книги (вы не должны пытаться использовать знания о том, какой букве алфавита соответствует нужный вам номер телефона). Подразумевается также, что, если нужный вам номер есть где бы то ни было на двух случайно открытых вами страницах, вы его обязательно найдете.

Читать еще:  Женское дыхание животом. Учимся дышать животом как профессионал

Есть и простой ответ, и более изощренный.

Вот простой ответ. Допустим, в телефонном справочнике Манхэттена одна тысяча страниц (это достаточно точная оценка: в издании этого справочника 2001 года было 1138 страниц. Вы можете игнорировать тот факт, что в начале и конце телефонной книги есть страницы, на которых нет номеров телефонов). Это значит, что в телефонной книге 500 разворотов. Таким образом, вероятность, что книга откроется в нужном вам месте в первый и в любой последующий раз, — один из пятисот.

Этот быстрый ответ вполне приемлем, учитывая, что самый уязвимый пункт в ваших рассуждениях — это догадка о количестве страниц в телефонном справочнике.

А теперь ответ, удовлетворяющий людей из «математического лагеря». В реалистической ситуации вам, наверное, захотелось бы узнать, сколько раз вам нужно случайным образом раскрыть телефонную книгу, чтобы быть уверенным с заданной вероятностью, что хотя бы один раз она раскроется на нужной вам странице. Допустим, вы хотите быть уверенными, что в 90 процентах случаев отыщете нужный вам номер. Сколько раз для этого нужно раскрыть телефонный справочник?

Поскольку это случайная процедура, абсолютных гарантий нет. Вам может повезти, и тогда вы найдете нужный номер на первой же странице, и, наоборот, вы можете миллион раз перелистывать книгу и ни разу не открыть ее на нужной странице. Если вы хотите быть на 100 процентов уверенными, то ответ прост: сколько бы раз вы ни открывали случайным образом телефонную книгу, вы никогда не можете быть уверены на 100 процентов, что она хотя бы раз откроется на нужной странице.

В общем, вам придется снова и снова раскрывать справочник, пока он открывается на ненужных вам страницах. Поэтому мы можем анализировать вероятность того, что телефонная книга будет раз за разом раскрываться на ненужных страницах.

Допустим, вам известно, что в справочнике точно 1000 страниц и 500 разворотов. Вероятность того, что вы раскроете книгу на неправильной странице в каждой из попыток — 499 из 500, так как из 500 возможных разворотов книги только один подходящий. Тогда вероятность того, что в n последовательных попытках телефонная книга каждый раз будет раскрываться на неверных страницах — (499/500)n .

Очевидно, что вероятность того, что вы откроете книгу на нужной странице за n последовательных попыток или раньше, будет равна выражению: 1—(499/500)n .

Эта формула позволяет вам вычислить, сколько раз вам нужно случайным образом раскрыть телефонную книгу, чтобы она с заданной вероятностью раскрылась на нужной вам странице. Если вы сделаете расчеты, например в Excel, то увидите, что для 50-процентной уверенности вам нужно раскрыть телефонный справочник 347 раз (или меньше, если вам повезет). Это число попытки и можно назвать «средним».

С другой стороны, этот ответ можно считать оптимистическим. Если вы сделаете 347 попыток — шансы на успех будут только 50 на 50.

Первоначальная оценка, которая была получена при помощи простого метода,— 500 попыток дают вероятность успеха 63 процента. Для того чтобы достигнуть 90-процентной вероятности успеха, вам нужно случайным образом раскрыть книгу 1150 раз.

Дата добавления: 2018-10-26 ; просмотров: 126 ; ЗАКАЗАТЬ РАБОТУ

Источники:

http://www.bolshoyvopros.ru/questions/26147-skolko-raz-v-den-strelki-chasov-sovpadajut.html
http://tproger.ru/problems/clock/
http://studopedia.net/9_26488_skolko-raz-v-techenie-sutok-perekrivayutsya-chasovaya-i-minutnaya-strelki.html

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector