1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Охарактеризовать организм как единую целостную биологическую систему. Организм человека как единая биологическая система

Охарактеризовать организм человека как целостную биологическую систему. Показать взаимосвязь различных органов и систем органов.

В организме клетки, ткани, органы и системы органов работают как единое целое. Их согласованная работа регулируется двумя способами: а) гуморальным — с помощью химических веществ через жидкие среды организма ( кровь, лимфу, межклеточную жидкость ) б) С помощью нервной системы:

1) Химические вещества способны регулировать самые разнообразные процессы в клетках, тканях, органах и в организме в целом. Многие из этих веществ оказывают значительное физиологическое действие в очень малых концентрациях = биологически активные вещества. Их вырабатывают специальные железы: внешней секреции — имеющие протоки, через которые вещества выделяются в полость тела, органов и на поверхности кожи; ( железы внешней секреции — слезные, потовые, слюнные, желудочные . ) железы внутренней секреции — не имеющие специальных протоков, выделяющие вещества в протекающую через них кровь ( гипофиз, щитовидная железа, надпочечники и др.)

Биологически активные вещества называются гормонами, разносятся кровью по всему организму, регулируют процессы обмена веществ, роста и развития. Половые гормоны стимулируют рост и развитие органов размножения. Адреналин (вырабатывается надпочечниками) изменяет функции многих органов: адреналин повышает температуру, уровень глюкозы в крови.

Гормоны регулируют функции всего организма: усиливая (возбуждая) или угнетая (тормозя). Таким образом они управляют деятельностью клеток, тканей, органов, систем органов и целым организмом.

2) Нервная регуляция.

Головной и спинной мозг связан нервами со всеми органами. между мозгом и всеми органами существуют двухсторонние связи. Головной мозг постоянно получает информацию об изменениях внешней и внутренней среды организма, с помощью нервных импульсах (электрических сигналов) он регулирует работу органов.

Организм существует как единое целое благодаря нервной и гуморальной регуляции, которые осуществляют взаимосвязь органов и систем органов.

Постоянство внутренней среды и устойчивость всех функций организма достигается саморегуляцией = система включения нервной и гуморальной регуляции при любых отклонениях от нормы. Например, повышение уровня сахара в крови —- нервные и гуморальные механизмы способствуют его снижению.

Организм единая целостная биологическая система

ВВЕДЕНИЕ

1.Анатомия и физиология – как наука, изучающая жизненно важные потребности человека.

Анатомия и физиология человека относится к числу биологических дисциплин, составляющих основу теоретической и практической подготовки медицинских сестер.

Анатомия — это наука, которая изучает форму и строение организма в связи с его функциями, развитием и под воздействием окружающей среды.

Физиология — наука о закономерностях процессов жизнедеятельности живого организма, его органов, тканей и клеток, их взаимосвязи при изменении различных условий и состояния организма.

Анатомия и физиология человека тесно связаны со всеми медицинскими специальностями. Их достижения постоянно оказывают влияние на практическую медицину. Невозможно проводить квалифицированное лечение, не зная хорошо анатомии и физиологии человека. Поэтому прежде чем изучать клинические дисциплины, изучают анатомию и физиологию. Эти предметы составляют фундамент медицинского образования и вообще медицинской науки.

Строение тела человека по системам изучает систематическая (нормальная) анатомия.

Строение тела человека по областям с учетом положения органов и их взаимоотношения между собой, со скелетом изучает топографическая анатомия.

Пластическая анатомия рассматривает внешние формы и пропорции тела человека, а также топографию органов в связи с необходимостью объяснения особенностей телосложения; возрастная анатомия — строение тела человека в зависимости от возраста.

Патологическая анатомия изучает поврежденные той или иной болезнью органы и ткани.

Совокупность физиологических знаний делят на ряд отдельных, но взаимосвязанных направлений — общую, специальную (или частную) и прикладную физиологию.

Общая физиология включает сведения, которые касаются природы основных жизненных процессов, общих проявлений жизнедеятельности, таких как метаболизм органов и тканей, общие закономерности реагирования организма (раздражение, возбуждение, торможение) и его структур на воздействие среды.

Специальная (частная) физиология исследует особенности отдельных тканей (мышечной, нервной и др.), органов (печени, почек, сердца и др.), закономерности объединения их в системы (системы дыхания, пищеварения, кровообращения).

Прикладная физиология изучает закономерности проявлений деятельности человека в связи со специальными задачами и условиями (физиология труда, питания, спорта).

Физиологию условно принято разделять на нормальную и патологическую. Первая изучает закономерности жизнедеятельности здорового организма, механизмы адаптации функций на воздействие разных факторов и устойчивость организма. Патологическая физиология рассматривает изменения функций больного организма, выясняет общие закономерности появления и развития патологических процессов в организме, а также механизмы выздоровления и реабилитации.

Организм единая целостная биологическая система

В процессе анатомического изучения человека его структуры условно подразделяются на клетки, ткани, органы, системы ор­ганов, которые и формируют организмы. Орга­низм един, он может существовать лишь благодаря своей целост­ности. Основной структурной единицей строения живого является клетка. Клетки и их производные образуют ткани, из которых сфор­мированы органы, образующие системы органов. И, наконец, системы интегрируются в целостный организм. Целостность ор­ганизма обеспечивается благодаря единой нейро-гуморально-гормональной регуляции его функций. И. П. Павлов доказал ведущую роль нерв­ной системы в интеграции организма и осуществлении его связи с внешней средой.

Клетки входят в состав тканей. Ткань — это исторически сложившаяся общность клеток и межклеточного вещества, объ­единенных единством происхождения, строения и функции.

Органы построены из тканей. Каждый орган содержит все виды тканей. Одна из тканей является ос­новной, «рабочей», выполняющей главную функцию органа.

Органы анатомически и функционально объединяются в сис­темы органов. Система — это ряд органов, имеющих общий план строения, единство происхождения и выполняющих одну боль­шую функцию (например, пищеварения, дыхания). В организме человека выделяют следующие системы органов: пищеварения (пищеварительную), дыхания (дыхательную), мочевыделительную, половую, нервную, кровеносную, лимфатическую и иммунную. Не­которые органы объединяются по функциональному принципу в аппараты: они зачастую имеют различное строение и происхож­дение, могут быть не связаны анатомически, но их объединяет участие в выполнении общей функции (например, опорно-двига­тельный, эндокринный аппараты), либо эти органы различны по своим функциональным задачам, но связаны онтогенетически (например, мочеполовой аппарат).

3.Основы регуляции физиологических функций организма

Физиологическая регуляция – это активное управление функциями организма и его поведением для поддержания оптимального уровня жизнедеятельности, постоянства внутренней среды и обменных процессов с целью приспособления организма к меняющимся условиям среды.

Механизмы физиологической регуляции:

Гуморальная физиологическая регуляция для передачи информации использует жидкие среды организма (кровь, лимфу, цереброспинальную жидкость и т.д.) Сигналы передаются посредством химических веществ: гормонов, медиаторов, биологически активных веществ (БАВ), электролитов и т.д.

Особенности гуморальной регуляции:

Читать еще:  Оксана костина личная жизнь гимнастки. История и этнология. Факты. События. Вымысел. Ранние годы, сведения о семье

не имеет точного адресата – с током биологических жидкостей вещества могут доставляться к любым клеткам организма;

скорость доставки информации небольшая – определяется скоростью тока биологических жидкостей – 0,5-5 м/с;

Нервная физиологическая регуляция для переработки и передачи информации опосредуется через центральную и периферическую нервную систему. Сигналы передаются с помощью нервных импульсов.

Особенности нервной регуляции:

имеет точного адресата – сигналы доставляются к строго определенным органам и тканям;

большая скорость доставки информации – скорость передачи нервного импульса – до 120 м/с;

Для нормальной регуляции функций организма необходимо взаимодействие нервной и гуморальной систем.

Нейрогуморальная регуляция объединяет все функции организма для достижения цели, при этом организм функционирует как единое целое.

Организм находится в неразрывном единстве с внешней средой благодаря активности нервной системы, деятельность которой осуществляется на основе рефлексов.

УЧЕНИЕ О ТКАНЯХ

4.Соединительная ткань: расположение в организме, функции, классификация, особенности строения. Соединительная ткань представляет обширную группу, включающую собственно соединительные ткани (рыхлая волокнистая и плотная волокнистая неоформленная и оформленная), ткани со специальными свойствами (ретикулярная, жировая), твердые ске­летные (костная и хрящевая) и жидкие (кровь и лимфа). Со­единительные ткани выполняют опорную, защитную (механиче­скую) функции (плотная волокнистая соединительная ткань, хрящ, кость), другие — трофическую (питательную), защитную (фагоцитоз и выработка антител) функции (рыхлая волокнистая и ретикулярная соединительная ткань, кровь и лимфа). В отличие от других тканей соединительная сформирована из многочис­ленных клеток и межклеточного вещества (состоящего из гликозаминогликанов, часть которых, связываясь с белками, образует протеогликаны), в ко­тором находятся раз­личные волокна (коллагеновые, эластиче­ские, ретикулярные). Межклеточное ве­щество кости твер­дое, крови и лимфы жидкое.

В рыхлой волок­нистой соединитель­ной ткани находится значитель­ное количество раз­личных клеточных элементов и волокна, беспорядочно ориен­тированные в основ­ном веществе. Распо­лагается эта ткань преимущественно по ходу кровеносных и лимфатических сосу­дов, нервов, покры­вает мышцы. Клеточ­ный состав рыхлой соединительной ткани представлен фибробластами, фиброцитами, плазмоцитами, тканевыми базофилами, липоцитами, пигментными клетками, эндотелиоцитами и перицитами сосудов, а также макрофагоцитами. Фибробласты — основная разновидность клеток соединительной ткани — крупные клетки с хорошо выраженной зернистой эндоплазматической сетью и комплексом Гольджи. Фибробласты синтезируют и выде­ляют компоненты межклеточного вещества. Заканчивая свой цикл развития, фибробласты превращаются в фиброциты — отростчатые клетки, содержащие множество вакуолей. Фиброциты не син­тезируют или крайне слабо синтезируют основное вещество соеди­нительной ткани. Плазмоциты, или плазматические клетки, — клетки иммунной системы, участвуют в защитных реакциях орга­низма, синтезируя антитела (белки иммуноглобулины). Они бога­ты элементами зернистой эндоплазматической сети. Плазматиче­ские клетки образуются из В-лимфоцитов. Тканевые базофилы (тучные клетки) — большие клетки, богатые крупными гранулами, содержащими гепарин и гистамин. Макрофагоциты — крупные клетки, имеющие большое коли­чество псевдоподий и выростов цитоплазмы, покрытых плазма­тической мембраной, богатые лизосомами, и фагосомами. Макрофагоциты происходят из моноцитов. Различают оседлые (в орга­нах кроветворения и печени) и кочующие макрофагоциты (в со­единительной ткани, серозных полостях, альвеолярные и др.). Липоциты — жировые клетки округлой формы, которые накап­ливают жир. Последний занимает практически всю клетку, а цито­плазма и уплощенное ядро лежат по периферии, окружая каплю жира. Скопления липоцитов образуют жировую ткань. Пигмент­ные клетки содержат множество зерен меланиная.

Плотная волокнистая соединительная ткань может быть не­оформленной и оформленной. В неоформленной — многочисленные во­локна густо переплетаются, а между ними содержится небольшое количество клеточных элементов (например, сетчатый слой кожи). Оформленная плотная соединительная ткань отличается упорядо­ченным расположением пучков волокон, определенным их направ­лением (связки, сухожилия, фиброзные мембраны).

Разновидностью соединительной ткани, состоящей из ретику­лярных клеток и ретикулярных волокон, является ретикулярная ткань. Она образует остов кроветворных и иммунных органов (костный мозг, вилочковая железа, селезенка, лимфатические уз­лы, миндалины и др.), в петлях которого располагаются разви­вающиеся клетки крови или иммунной (лимфоидной) системы.

Хрящевая и костная ткани также являются разновидностями соединительной. Хрящевая ткань состоит из хрящевых клеток хондробластов и хондроцитов и основного (хрящевого межкле­точного) вещества, находящегося в состоянии геля, в котором имеются соединительно-тканные волокна. Различают три типа хрящевой ткани: 1- гиалиновый хрящ, из которого построены сустав­ные, реберные, эпифизарные хрящи и ряд хрящей гортани; 2- волок­нистый хрящ, в основном хрящевом веществе которого содержится большое количество коллагеновых волокон, при­дающих хрящу повы­шенную прочность. Из волокнистого хряща по­строены фиброзные кольца межпозвоноч­ных дисков, суставные диски и мениски, этим хрящом покрыты су­ставные поверхности в височно — нижнечелюст­ном и грудинно-ключичном суставах. 3- Элас­тический хрящ в хря­щевом основном веще­стве содержит много­численные сложно пе­реплетающиеся эласти­ческие волокна. Он жел­товатого цвета, отлича­ется упругостью. Из эластического хряща по­строены клиновидные и рожковидные хрящи гор­тани, голосовой отрос­ток черпаловидных хря­щей, надгортанник, хрящ ушной раковины, хря­щевая часть слуховой трубы и наружного слухового прохода. В от­личие от гиалинового эластический хрящ не окостеневает. Костная ткань, отличающаяся особыми механическими свой­ствами, состоит из костных клеток, замурованных в костное ос­новное вещество, содержащее коллагеновые волокна и пропитан­ное неорганическими соединениями.

Кровь и лимфа выполняют трофическую, транспортную и за­щитную функции. Кровь и лимфа имеют жидкое межклеточное вещество сложного состава (плазму) и взвешенные в ней клетки. В крови содержатся безъядерные клетки эритроциты (4,0—5,0- 10 12 /л крови), лейкоциты (4,0—6,0- 10 9 /л крови), среди которых выделяют незернистые, или агранулоциты (лимфо­циты и моноциты), и зернистые, или гранулоциты (нейтрофильные, ацидофильные и базофильные). В крови имеются также кро­вяные пластинки (тромбоциты), число которых составляет 180,0—320,0- 10 9 /л. Эритроциты, или красные кровяные тельца, имеют форму двоя­ковогнутых дисков диаметром от 7 до 10 мкм, они содержат гемо­глобин и участвуют в переносе кислорода и углекислого газа, а также ряда биологически активных веществ. Гранулоциты имеют шаровидную форму и содержат в цитоплазме гранулы. Грануло­циты выполняют защитную функцию благодаря способности к фа­гоцитозу. В нейтрофильных гранулоцитах различают гранулы двух типов: более крупные азурофильные, являющиеся лизосомами, и мелкие специфические нейтрофильные (преобладают), богатые бактерицидным веществом и щелочной фосфатазой. Диаметр нейтрофилов 7—8 мкм; они подвижны и осуществляют фагоцитоз. Цитоплазма эозинофильных гранулоцитов богата специфическими гранулами, которые являются лизосомами. Диаметр эозинофилов 9—10 мкм, они способны к фагоцитозу, однако их основная функция — участие в аллергических реакциях. Крупные гранулы базофилъных гранулоцитов содержат гепарин, гистамин и серото-нин. Диаметр базофилов 9—10 мкм, они также способны к фаго­цитозу и участвуют в регуляции сосудистой проницаемости, свер­тываемости крови, а также в аллергических реакциях. Лимфоциты являются основными участниками иммунологиче­ских реакций и осуществляют клеточные (Т-лимфоциты) и гумо­ральные (В-лимфоциты) защитные реакции (см. «Иммунная си­стема»). Диаметр лимфоцитов варьирует от 7 до 12 мкм. В зави­симости от этого выделяют малые (преобладают), средние и боль­шие лимфоциты. Малые лимфоциты бедны органеллами, функцио­нально они подразделяются на Т- и В-лимфоциты. Последние являются источником плазматических клеток, синтезирующих антитела. Моноциты — крупные округлые клетки диаметром 12—15 мкм, в их цитоплазме имеются лизосомы. Моноциты являются источ­ником всех макрофагов. Тромбоциты, или кровяные пластинки, — безъядерные клетки неправильной формы, размеры их не превышают 2—3 мкм. Тром­боциты богаты лизосомами и содержат небольшое число гранул, в которых имеется серотонин. Тромбоциты участвуют в сверты­вании крови и выделяют тромбоцитарный фактор роста. Клеточный состав лимфы в отличие от крови представлен пре­имущественно лимфоцитами, число которых в периферической (предузловой) лимфе значительно меньше, чем в центральной (послеузловой). В лимфе отсутствуют эритроциты.

Читать еще:  Палка для самообороны. Японские боевые искусства. Виды боевых искусств Японии

Лекция 1. Организм как единая биологическая система

В биологии организм рассматривается как самостоятельно существующая единица мира, функционирование которой возможно лишь при постоянном взаимодействии с окружающей его внешней средой и самообновлении в результате такого взаимодействия.

Основной функцией организма является обмен веществ (метаболизм), который обеспечивается одновременно и непрерывно протекающими процессами во всех органах и тканях — ассимиляция и диссимиляция. Ассимиляция (анаболизм) сводится к образованию из поступающих в организм извне веществ и накоплению новых химических соединений, идущих на формирование различных тканей (массы тела) и создание энергетического потенциала, необходимого для осуществления жизнедеятельности, в том числе движений. Диссимиляция (катаболизм)это расщепление химических веществ в организме, разрушение старых, отмерших или поврежденных тканевых элементов тела, а также освобождение энергии из веществ, накопленных в процессе ассимиляции.

С обменом веществ связаны такие функции организма, как рост, развитие, размножение, питание, пищеварение, дыхание и выделение продуктов жизнедеятельности, движения, реакции на изменение внешней среды и др.

Многообразно влияние на организм окружающей среды, которая является для него не только поставщиком жизненно необходимых веществ, но и источником возмущающих воздействий (раздражителей). Постоянные колебания внешних условий стимулируют соответствующие приспособительные реакции в организме, которые предотвращают возможное появление отклонений в его внутренней среде (кровь, лимфа, тканевая жидкость) и большинстве клеточных структур.

В процессе эволюции, при формировании взаимоотношений организма с внешней средой, в нем выработалось важнейшее свойство сохранять постоянство состава внутренней среды — гомеостаз ( от греч. « гомойос» — одинаковый, «стасис» — состояние). Выражением гомеостаза является наличие ряда биологических константустойчивых количественных показателей, характеризующих нормальное состояние организма. К ним относятся температура тела, содержание в крови и тканевой жидкости белков, сахара, ионов натрия, калия и др. Константы определяют физиологические границы гомеостаза, поэтому при длительном пребывании организма в условиях, значительно отличающихся от тех, к которым он приспособлен, гомеостаз нарушается, и могут произойти сдвиги, не совместимые с нормальной жизнью.

Однако адаптивные механизмы организма не исчерпываются сохранением гомеостатического состояния, поддержанием постоянства регулируемых функций. Например, при разного рода физических нагрузках направленность регуляции ориентирована на обеспечение оптимальных условий функционирования организма в связи с возросшими требованиями (учащение сердцебиения, дыхательных движений, активизации обменных процессов и др.).

Взаимосвязь функций и процессов обеспечивается двумя механизмами регуляции — гуморальным и нервным, которые в процессе биологического приспособления в животном мире являлись доминирующими, а затем постепенно трансформировались в регуляторы функций организма. Гуморальный механизм( от лат. «хумор» — жидкость) регулирования осуществляется за счет химических веществ, которые содержатся в циркулирующих в организме жидкостях (крови, лимфе, тканевой жидкости). Важнейшими из них являются гормоны(от греч. «хормон» — движущий), которые выделяются железами внутренней секреции. Попадая в кровоток, они поступают ко всем органам и тканям, независимо от того участвуют они в регуляции функций или нет. Только избирательное отношение тканей к конкретному веществу обуславливает включение гормона в процесс регуляции. Движутся гормоны со скоростью кровотока без определенного «адресата». Между различными химическими регуляторами, особенно гормонами, четко проявляется принцип саморегуляции. Например, если становится избыточным количество инсулина (гормона поджелудочной железы) в крови, это служит пусковым сигналом к усилению продукции адреналина (гормона мозгового слоя надпочечников). Динамическое равновесие уровня концентрации этих гормонов обеспечивает оптимальное содержание сахара в крови. Нервный механизм регулирования осуществляется через нервные импульсы, идущие по определенным нервным волокнам к строго определенным органам или тканям организма. Нервная регуляция совершенней гуморальной, поскольку, во-первых, распространение нервных импульсов идет быстрее (от 0,5 до 120 м/с) и, во-вторых, они имеют адресную направленность, т.е. по нейронным путям импульсы идут к конкретным клеткам или группам клеток.

Основным нервным механизмом регуляции функций является рефлексответная реакция тканей или органов на раздражение, поступающее из внешней и внутренней среды. Он реализуется по рефлекторной дуге — пути, по которому идет возбуждение от рецепторов до исполнительных органов (мышц, желез), осуществляющих ответную реакцию на раздражение. Различают два вида рефлексов: безусловные или врожденные и условные или приобретенные. Нервная регуляция функций организма складывается из сложнейших взаимоотношений этих двух видов рефлексов.

Функционирование нервной системы и химическое взаимодействие клеток и органов обеспечивают важнейшую способность организма – саморегуляциюфизиологических функций, приводящую к автоматическому поддержанию необходимых организму условий его существования. Всякий сдвиг во внешней или внутренней среде организма вызывает его деятельность, направленную на восстановление нарушенного постоянства условий его жизнедеятельности, т.е. восстановление гомеостаза. Чем выше развит организм, тем совершеннее и устойчивее гомеостаз.

Суть саморегулирования состоит в направленном на достижение конкретного результата управления органами и процессами их функционирования в организме на основе информации об этом, которая циркулирует в каналах прямой и обратной связи по замкнутому циклу, например, терморегуляция, боль и др.). Функцию каналов связи могут выполнять рецепторы, нервные клетки, циркулирующие в организме жидкости и др.

Осуществляется саморегуляция по определенным закономерностям. Выделяют ряд принципов саморегулирования:

1. Принцип неравновесности выражает способность живого организма сохранять свой гомеостаз на основе поддержания динамического неравновесного, асимметричного состояния относительно окружающей среды. При этом организм как биологическая система не только противодействует не благоприятным воздействиям и облегчает действие на него положительных влияний, но в отсутствие тех и других может проявлять спонтанную активность, отражающую громадный объем деятельности по созданию основных структур. Закрепление результатов спонтанной активности во вновь возникающих структурах формирует основу явлениям развития.

2. Принцип замкнутого контура регулирования заключается в том, что в живой системе информация о реакции на поступившее раздражение определенным образом анализируется и в случае необходимости корректируется. Информация циркулирует по замкнутому контуру с прямыми и обратными связями пока не будет достигнут заданный результат. Примером может служить регуляция работы скелетных мышц. Из центральной нервной системы (ЦНС) к мышце поступает раздражение по каналам прямой связи, мышца отвечает на него сокращением (или напряжением). Информация о степени сокращения мышцы по каналам обратной связи поступает в ЦНС, где происходит сравнение и оценка полученного результат относительно должного. В случае их несовпадения из ЦНС к мышце посылается новый корректирующий импульс. Информация будет циркулировать по замкнутому контуру до момента достижения необходимого уровня мышечной реакции.

Читать еще:  Немец в валенках анализ рассказа. "Суровая правда" Константина Воробьева. Урок внеклассного чтения по рассказу К.Д. Воробьева "Немец в валенках"

3. Принцип прогнозирования состоит в том, что биологическая система как бы определяет свое поведение (реакции, процессы) в будущем на основе оценки вероятности повторения прошлого опыта. Вследствие такого прогноза в ней формируется основа предупредительной регуляции как настройки на ожидаемое событие, встреча с которым оптимизирует механизмы коррегирующей деятельности. Например, прогнозирующая сигнальная функция условного рефлекса; использование элементов сформированных прежде двигательных действий при освоении новых.

Двигательная активность всегда была важнейшим звеном приспособления живых организмов к окружающей среде и в процессе эволюции она сформировалась как биологическая потребность человека наравне с потребностями в пище, воде, самосохранении, размножении.

Мышечная работа стимулирует функциональную активность практически всех органов и тканей, которая целенаправленно координируется нервной системой, вызывая соответствующие сдвиги в деятельности организма в целом. По ходу биологического развития организма двигательная деятельность совершенствовала механизмы регуляции вегетативных функций, что явилось важным фактором расширения возможностей адаптации человека к условиям существования. На этой основе сформировалась ведущая роль моторики во взаимодействии органов и систем, обеспечивающих в организме гармоничное развитие человека. Например, деятельные и подвижные дети лучше развиваются и более крепки здоровьем. Чем разнообразнее двигательная деятельность, тем совершеннее строение организма.

С возрастом, по мере приближения к старости биологическая потребность в движениях снижается, двигательная активность падает. Уменьшение физических нагрузок ведет к появлению атрофии внутренних органов, свертыванию активности функционирования организма в целом. К 70 годам мышечная масса уменьшается примерно, на 40%, особенно мышц, обеспечивающих сохранение позы. Почти вдвое уменьшается печень. Потребление кислорода на килограмм массы тела в минуту у 6-летнего ребенка составляет 7,35 литра, у 30-летнего — 4,1л, а в 90 лет -0,1л.

Низкая двигательная активность, гиподинамия (недостаток движений) отрицательно сказывается на работе адаптационных механизмов организма по отношению к физическим и психическим нагрузкам, изменениям внешних условий жизнедеятельности и их последствиям. Особенно неблагоприятное воздействие оказывает гиподинамия на развитие молодых и функционирование зрелых организмов.

Тренированный организм отличается рядом особенностей:

v Устойчивость и высокую стабильность физиологических констант по отношению к возмущающим воздействиям на организм физических упражнений;

v Сопротивляемость большим гомеостатическим отклонениям на основе развитой способности к высокой мобилизации функций организма в связи со значительным диапазоном сдвигов во всей вегетативной среде, возникающим при интенсивной двигательной деятельности;

v Переносимость сильных отклонений гомеостатический констант, характерных для интенсивных физических нагрузок, благодаря выработанным свойствам организма сохранять необходимый уровень работоспособности при крайне неблагоприятных условиях.

Занятия физическими упражнениями оказывают многостороннее положительное влияние на организм. Так под влиянием сильных раздражителей в организме человека может возникнуть сильное напряжение или стрессе. С помощью мышечных напряжений при постепенном нарастании физической нагрузки реакция тревоги начинает проявляться значительно слабее или исчезает совсем. После нескольких тренировочных занятий в организме развивается состояние повышенной устойчивости, как в отношении мышечных нагрузок, так и к факторам, вызывающим стресс. Физически тренированные люди, по сравнению с нетренированными, более устойчивы к недостатку кислорода(гипоксии). Выполнение различных физических упражнений (бег, плавание, гребля) сопровождается возникновением в организме в определенных объемах кислородного долга. При систематических занятиях (тренировках) совершенствуются механизмы регуляции деятельности организма в условиях гипоксии.

Исследованиями установлено, что в результате физической тренировки возрастает устойчивость организма к действию токсических веществ. Многодневные мышечные нагрузки после радиоактивного облучения организма в некоторых случаях не только улучшает течение болезни, но и способствует выздоровлению. У людей, работающих с радиоактивными веществами, картина крови никогда не ухудшается так, как у слабо физически подготовленных людей.

У занимающихся спортом людей после соревнований или интенсивных тренировок количество лейкоцитов в крови обычно повышено. Этот механизм, отмечает профессор Фарфель В.С., развился у наших предков в качестве предохранительного фактора, обеспечивающего готовность к отражению возможного попадания в организм инфекции при случайном ранении во время охоты или защиты от нападения. Усиленная выработка лейкоцитов при работе потеряла в какой-то мере свое первоначальное значение, но сохранила другое: человек, совершающий мышечную работу, как бы упражняет свои кровеносные органы в выработке защитных кровяных телец.

У нетренированного человека при температуре тела 37-38 0 наступает резкое снижение физической работоспособности, а спортсмены даже при температуре 41 0 могут справиться с очень большой физической нагрузкой.

Постоянными спутниками мышечной деятельности являются утомление и восстановление. В процессе работы организм расходует свои энергоресурсы, в период отдыха — восполняет. Обычно утомление рассматривают, как временное снижение работоспособности, вызываемое интенсивной или длительной работой. Мышечная деятельность связана с вовлечением в работу многих органов и систем (мышцы, внутренние органы, железы), функциональная активность которых координируется центральной нервной системой ЦНС. Происходит сложный процесс приспособления организма к условиям деятельности, в ходе которого на фоне возникающего дефицита энергетических веществ происходит разлад в координационной работе нервных центров с доминированием тормозных реакций, понижающих уровень работоспособности. Развивающееся утомление является защитной реакцией, предохраняющей от истощения энергетических ресурсов и нарушений в регуляции функций организма. Доказано, что утомление является естественным стимулятором интенсивных восстановительных процессов, обеспечивающих повышение работоспособности. Сущность физиологических перестроек под влиянием мышечной деятельности состоит в том, что вызванные работой функциональные сдвиги не только выравниваются во время отдыха до исходного уровня, но и повышаются до более высокого уровня. Происходит сверхвосстановление, степень выраженности которого зависит от интенсивности выполняемой работы.

Таким образом, устраняющие дефицит двигательной активности современного человека занятия физическими упражнениями, тренировки с оптимальными нагрузками стимулируют в организме активность работы механизмов адаптации к их воздействию. Вследствие этого в мышцах, скелете, сердечно-сосудистой, дыхательной и других системах и органах происходят прогрессивные физиологические изменения, способствующие расширению функциональных возможностей, совершенствованию структурных свойств организма в целом, увеличению его гомеостатического потенциала.

Вопросы для самостоятельной подготовки:

Источники:

http://studexpo.ru/100402/biologiya/oharakterizovat_organizm_cheloveka_tselostnuyu_biologicheskuyu_sistemu_pokazat_vzaimosvyaz_razlichnyh_organov
http://lektsii.org/15-84480.html
http://studopedia.ru/18_31430_lektsiya—organizm-kak-edinaya-biologicheskaya-sistema.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector